

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 14 Number 10 (2025)

Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2025.1410.021

Bacteriological Profile of Prosthetic Joint Infections (PJI) in a Tertiary Care Hospital

Abhishek Velamuri¹⁰*, K. Navya and Shiva Priya Eswaran

Department of Microbiology, Second Floor, KIMS, Minister Road, Secunderabad, India

*Corresponding author

ABSTRACT

Keywords

Orthopedic infections, Antibiotics in prosthetic joint infection, Periprosthetic joint infection

Article Info

Received: 15 August 2025 Accepted: 26 September 2025 Available Online: 10 October 2025 Prosthetic joint infections (PJI) represent a severe complication following arthroplasty, contributing significantly to patient morbidity and substantial healthcare expenditures. This study aimed to characterize the microbiological profile of prosthetic joint infections at a tertiary care hospital. A prospective evaluation was conducted on 66 in-patient samples from individuals admitted to the orthopedic department with a history of PJI between November 2024 and May 2025. Periprosthetic tissue samples were collected and processed according to standard microbiological protocols. Among 66 confirmed PJI cases, a culture positivity rate of 56% was observed. Gram-positive cocci were the predominant pathogens (n=25, 37.8%), including MSSA (n=5, 7.5%), MRSA (n=6, 9%), Staphylococcus other than S.aureus group SoSA (n=8, 12%), Streptococcus species (n=4, 6.06%), and Enterococcus species (n=2, 3.03%). Gram-negative bacilli accounted for 18.1% of infections (n=12), with Enterobacter cloacae complex (n=4, 6.06%), E. coli (n=3, 4.5%), P. aeruginosa (n=3, 4.5%), S. marcescens (n=1, 1.5%), and K. pneumoniae (n=1, 1.5%) being isolated. The findings of this study highlight the significant prevalence of both gram-positive cocci, particularly staphylococcal species, and gram-negative bacilli in prosthetic joint infections within our tertiary care setting. This detailed bacteriological profile is crucial for guiding empirical antibiotic therapy and developing targeted infection control strategies to improve patient outcomes and reduce the burden of PJI.

Introduction

Prosthetic joint replacement surgery, while offering significant improvements in quality of life for patients with severe arthritic conditions, is not without its complications 1. Among these, prosthetic joint infection (PJI) stands out as one of the most challenging and devastating. PJI can lead to prolonged hospitalization, multiple revision surgeries, significant functional

impairment, and in severe cases, even limb amputation or mortality. The economic burden associated with PJI is also substantial, encompassing the costs of surgical interventions, prolonged antibiotic therapy, and rehabilitation 2.

The incidence of PJI varies depending on the type of joint replacement and patient comorbidities, but it remains a persistent concern. Knowledge about the

specific microbiological agents responsible for PJI is important for effective management. This directly informs the choice of empirical antibiotic regimens, which are often initiated before definitive culture results are available 3.

Despite the growing body of literature on PJI, regional variations in bacteriological profiles are common due to differences in hospital environments, patient populations, and local antibiotic prescribing practices. Local hospital antibiogram, continuous surveillance of the causative organisms can guide infection control practices and antimicrobial stewardship programs, ultimately contributing to better patient outcomes and reduced antibiotic resistance. This prospective study was undertaken at a tertiary care hospital to determine the current bacteriological profile of prosthetic joint infections, aiming for optimising clinical management and infection prevention strategies in our hospital.

Materials and Methods

Study Design and Setting

This was a prospective observational study conducted at Krishna Institute of Medical Sciences, Secunderabad, a tertiary care hospital, between November 2024 and May 2025. The study was approved by the institutional ethics committee.

Patient Population

The study included in-patients admitted to the orthopedic department with a clinical suspicion or confirmed diagnosis of prosthetic joint infection. A total of 66 samples were collected from distinct PJI cases. Inclusion criteria comprised patients with a prosthetic joint (e.g., hip, knee, shoulder) presenting with signs of infection, such as pain, swelling and for whom periprosthetic tissue samples were obtained during surgical procedures. Exclusion criteria included patients with non-infectious causes of prosthetic joint failure, repeated patient population and those from whom adequate samples could not be obtained.

Sample Collection

Periprosthetic tissue samples were collected surgically during revision arthroplasty or debridement procedures, or via aspiration under strict aseptic conditions inside the operation theatre. Tissue samples from different sites within the infected area were obtained to maximise culture yield. Samples were immediately transported to the microbiology laboratory in sterile containers, without delay to minimize bacterial loss or overgrowth of contaminants.

Microbiological Processing

All samples were processed according to standard microbiological protocols. Tissue samples were homogenized. Tissue samples were then directly inoculated and were incubated in normal saline to facilitate bacterial release and then inoculated onto blood agar and MacConkey agar. Enrichment broth - thioglycolate broth, was also inoculated to enhance the recovery of fastidious organisms. Plates were incubated at 37°C under appropriate atmospheric conditions (aerobic, anaerobic, 5% CO2) for up to 5 days to allow for the growth of slow-growing or fastidious organisms.

Bacterial Identification and Antimicrobial Susceptibility Testing

Bacterial isolates were identified based on standard phenotypic methods, including Gram staining, colony morphology, biochemical tests. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method or automated systems (e.g., VITEK 2) according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results were interpreted as susceptible, intermediate, or resistant.

Data Collection and Analysis

Microbiological data were collected and recorded in a standardised format. Descriptive data analysis was performed, focusing on the percentage of different bacterial species isolate0d.

Results and Discussion

Out of the 66 confirmed cases of prosthetic joint infection, a culture positivity rate of 56 % was achieved. This indicates that in a significant proportion of clinically suspected cases, a causative microorganism was successfully identified through culture. The bacteriological analysis revealed a diverse spectrum of pathogens responsible for PJI in our cohort. The majority of infections were attributed to gram-positive cocci,

accounting for 25 isolates, representing 37.8% of the total confirmed cases. Within this group, staphylococcal species were the most prevalent:

Staphylococcus other than *S. aureus* group SoSA (SoSA) species were found in 8 cases (12%), making them the single most frequently isolated pathogen.

Methicillin-resistant *Staphylococcus aureus* (MRSA) was identified in 6 cases (9%).

Methicillin-sensitive *Staphylococcus aureus* (MSSA) was isolated in 5 cases (7.5%)

Streptococcus species were responsible for 4 infections (6.06%).

Enterococcus species were isolated in 2 cases (3.03%).

Gram-negative bacilli comprised a notable proportion of infections, accounting for 12 isolates, or 18.1% of the total. The specific gram-negative organisms identified included:

Enterobacter cloacae complex in 4 cases (6.06%).

Escherichia coli in 3 cases (4.5%).

Pseudomonas aeruginosa in 3 cases (4.5%).

Serratia marcescens in 1 case (1.5%).

Klebsiella pneumoniae in 1 case (1.5%).

No fungal infections were specifically mentioned in the provided abstract data.

The findings of this prospective study provide insights into the current bacteriological profile of prosthetic joint infections in our tertiary care setting. Observed culture positivity rate of 54.5%. This underscores the challenges associated with culturing PJI pathogens, often due to biofilm formation, prior antibiotic use, or the presence of fastidious organisms 4, 5, and 6. Efforts to improve culture yield, such as extended incubation periods, sonication of explanted components, and advanced molecular diagnostic techniques, are increasingly being adopted to address this issue at our tertiary care center.

Gram-positive cocci remain the predominant causative agents of PJI in our study which was similar to the study

conducted Dragosloveanu S et al 7 contributing of about 37.8% due to hematogenous distribution. Within this group, Staphylococcus other than S.aureus group (SoSA) emerged as the most common individual pathogen (12%), followed by Staphylococcus aureus (MSSA and MRSA combined, 16.5%). Their dominance is due to their ability to form biofilms on prosthetic surfaces, their presence on skin as normal flora, and their introduction during surgery 8. The high prevalence of MRSA (9%) similar to the study conducted by Hays MR et al., 9 is a alarming finding which could be possibly due to the usage of MRSA-specific prophylactic antibiotics such as mupirocin highlighting the need for vigilance in infection control practices and appropriate antibiotic selection, particularly in topical and empirical therapy. The presence of Streptococcus and Enterococcus species, though less frequent, also emphasizes the need for broadspectrum empirical coverage.

Proportion of gram-negative bacilli (18.1%) when compared to gram positive cocci similar to the study conducted by Silva RB *et al.*, 10 were isolated. The identification of *Enterobacter cloacae* complex, *E. coli*, and *P. aeruginosa* as significant contributors indicates a potential shift or regional variation in the PJI microbial landscape.

Their increasing incidence is a growing concern due to their intrinsic or acquired resistance mechanisms, which can complicate treatment. *P. aeruginosa*, in particular, is notorious for its ability to form robust biofilms and its multi-drug resistance, often leading to more aggressive and harder-to-treat infections 11. The presence of *Serratia marcescens* and *Klebsiella pneumoniae* further underscores the diverse range of gram-negative pathogens encountered 12.

The bacteriological profile presented in this study has direct implications for clinical practice. The high prevalence of staphylococcal species, including MRSA, necessitates empirical antibiotic regimens that provide effective coverage against these organisms, often incorporating vancomycin or daptomycin initially. However, the significant contribution of gram-negative bacilli warrants careful consideration, especially in patients with risk factors such as immunocompromised status, prior surgeries, or specific exposure history. Early and accurate identification of the causative organism through robust microbiological techniques is crucial for de-escalating antibiotics, minimizing the emergence of resistance, and improving patient outcomes.

Figure.1 Antibiogram of SoSA

Gram Positive Organism	Tentates	Benzyl Penicillin (%)					Erythrom yein (%)						•	Tigecyclin e (%)	Cotrimox azole (%)
Staphyloc															
occus sp. (SoSA)	8	13%	0%	0%	0%	0%	25%	13%	88%	88%	100%	100%	50%	100%	88%

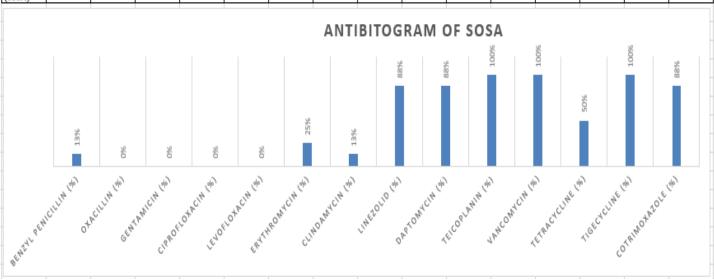
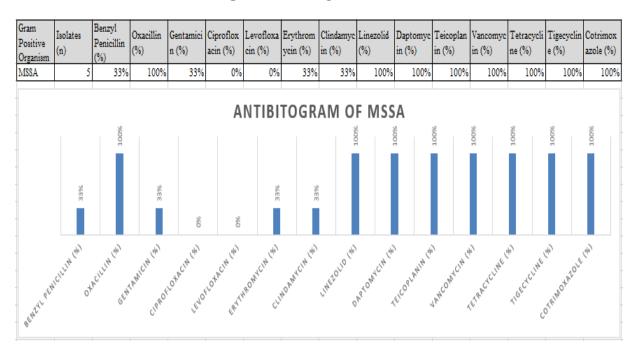



Figure.2 Antibiogram of MRSA

MRSA 6 0% 0% 0% 0% 0% 100% 100% 1	100% 100%	100%	000											
			0%	100%	100%									
ANTIBITOGRAM OF MRSA														
100%	100%	100%		100%	100%									
%0 %0 %0 %0			%0		-									
BENTAL ENGLITH (Se) OKACILIH (SENIANICIN (SE) CIBEOFOXACIN (SE) LENOLOXACIN (SE) LINDANCIN (SE) LINDANCIN (SE) OKACIN (SE) OKACIN (SE) LELORA	Janua Janecharch de	er actual	TIGETACLINE	OF AMOUNTALOE	qo									

Figure.3 Antibiogram of MSSA

Figure.4 Antibiogram of *Enterobacter cloacae* complex

Gram Negative Organism	Isolates (n)	Gentamy cin	Ciproflo xacin	Levoflox acin	Tetracycl ine	Tigecycli ne	Cotrimo xazole	Pip + Taz	Ceftazidi me	Cef/Sulb actum	Cefepim e	Imipene m	Meropen em	Amikaci n	Amoxicil lin + Clavulan ic acid	Minocycl	Colistin
Entero.clo acae complex		25%	0%	0%	75%	100%	50%	75%	75%	75%	50%	50%	50%	100%	50%	75%	100%
				AN	ГІВІТС	GRAN	/I OF I	ENTER	ОВАСТ	ER CL	DACAE	сомі	PLEX				
				75%	100%		75%	75%	75%				100%			960	100%
2550			960			3036				9605	30%	30%		36 Os			
GENT ANYC	CIPROFLOXA	IN LEVORION	CIM TETRACY	line Joeca	CIME	kazole P	R The CEF	RAZIDIME CEFIS	JI BACTUPA	CEFEPIARE	MIPEHEM	MEROPEMEN	ARNINACIP	AMOXICILLIM	MINDEYCLL	ate cours	TIN

In conclusion, this prospective study provides the bacteriological profile of prosthetic joint infections at a tertiary care hospital. The findings underscore the continued prominence of gram-positive cocci, particularly staphylococcal species (SoSA, MSSA, MRSA), as major contributors to PJI. Also the study

highlights a notable proportion of gram-negative bacilli, including multidrug-resistant organisms, as significant pathogens in this setting. A comprehensive understanding of the PJI pathogens is essential for enhanced patient care and management.

Further research focusing on antibiotic susceptibility patterns and the role of molecular diagnostics in improving culture-negative PJI cases should be considered.

Author Contributions

Abhishek Velamuri: Conceived the original idea and designed the model the computational framework and wrote the manuscript; K. Navya: Formal analysis, writing review and editing; Shiva Priya Eswaran: Validation, methodology, writing—reviewing

Declarations

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Conflict of Interest The authors declare no competing interests.

References

- Rodríguez-Merchán, E.C.; Davidson, D.J.; Liddle, A.D. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. *Int. J. Mol. Sci.* 2021, 22, 10243. https://doi.org/10.3390/ijms221910243
- Moriarty, T.F.; Schlegel, U.; Perren, S.; Richards, R.G. Infection in fracture fixation: Can we influence infection rates through implant design? *J. Mater. Sci. Mater. Med.* 2010, *21*, 1031–1035.
- Filipovic, U.; Dahmane, R.G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. *Adv. Colloid Interface Sci.* 2020, 283, 102228.
- Mottola, C.; Matias, C.S.; Mendes, J.J.; Melo-Cristino, J.; Tavares, L.; Cavaco-Silva, P.; Oliveira, M. Susceptibility patterns of *Staphylococcus aureus* biofilms in diabetic foot infections. *BMC Microbiol*. 2016, *16*, 119.
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. *Clin. Microbiol. Infect.* 2014, *20*, 981–990.

Nishimura, S.; Tsurumoto, T.; Yonekura, A.; Adachi, K.;

- Shindo, H. Antimicrobial susceptibility of *Staphylococcus aureus* and *Staphylococcus epidermidis* biofilms isolated from infected total hip arthroplasty cases. *J. Orthop. Sci* 2006, *11*, 46–50.
- Dragosloveanu S, Birlutiu RM, Neamtu B, Birlutiu V. Microbiological Profiles, Antibiotic Susceptibility Patterns and the Role of Multidrug-Resistant Organisms in Patients Diagnosed with Periprosthetic Joint Infection over 8 Years: Results from a Single-Center Observational Cohort Study from Romania. Microorganisms. 2025 May 21; 13(5):1168.

https://doi.org/10.3390/microorganisms13051168.

- Boyle KK, Wood S, Tarity TD. Low-Virulence Organisms and Periprosthetic Joint Infection-Biofilm Considerations of These Organisms. Curr Rev Musculoskelet Med. 2018 Sep; 11(3): 409-419. https://doi.org/10.1007/s12178-018-9503-2.
- Hays MR, Kildow BJ, Hartman CW, Lyden ER, Springer BD, Fehring TK, Garvin KL. Increased Incidence of Methicillin-Resistant Staphylococcus aureus in Knee and Hip Prosthetic Joint Infection. J Arthroplasty. 2023 Jun; 38(6S):S326-S330.

https://doi.org/10.1016/j.arth.2023.02.025.

- Da Silva RB, Salles MJ. Outcomes and Risk Factors in Prosthetic Joint Infections by multidrug-resistant Gramnegative Bacteria: A Retrospective Cohort Study. Antibiotics (Basel). 2021 Mar 23; 10(3):340. https://doi.org/10.3390/antibiotics10030340.
- Gómez-Junyent J, Lora-Tamayo J, Sorlí L, Murillo O. Challenges and strategies in the treatment of periprosthetic joint infection caused by multidrugresistant Gram-negative bacteria: a narrative review. Clin Microbiol Infect. 2025 Jun 18:S1198-743X (25) 00302-7. https://doi.org/10.1016/j.cmi.2025.06.015
- Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J, Palomino J, Euba G, Riera M, Sánchez-Somolinos M, Benito N, Fernández-Sampedro M, Sorli L, Guio L, Iribarren JA, Baraia-Etxaburu JM, Ramos A, Bahamonde A, Flores-Sánchez X, Corona PS, Ariza J; REIPI Group for the Study of Prosthetic Infection. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014 Nov; 20(11): O911-9. https://doi.org/10.1111/1469-0691.12649.

How to cite this article:

Abhishek Velamuri, K. Navya and Shiva Priya Eswaran. 2025. Bacteriological Profile of Prosthetic Joint Infections (PJI) in a Tertiary Care Hospital. *Int.J.Curr.Microbiol.App.Sci.* 14(10): 215-219.

doi: https://doi.org/10.20546/ijcmas.2025.1410.021